

Energy Efficiency Considerations in Refrigeration Systems

Donall O'Brien Industrial Energy Consultant

Different Refrigeration Systems

- Large Commercial/Light Industrial
- Large Scale Food Industry Systems
- Low Temperature Distributed Cooling
- Industrial Scale Chilled water systems

Large Scale Food Industry Systems

• Some of the largest refrigeration systems in the country are used in Food production facilities such as meat processing, convenience foods, dairy products.

- · Ammonia historically due to scale
- Distributed Ammonia & Secondary Systems
- Dairies generally +2°Chilled water

Factors Affecting Energy Efficiency in Industrial Refrigeration Systems

Top 8 Areas for Improved Efficiency							
 Challenge Cooling Loads As a utility engineer – don't accept any loads at face value! Design and Operational viewpoint 							
Make a spreadsheet of all the cooling loads and try to put peak average and base loads on it							
	Cooling Load		Average		Required Temp		
	AHU 1	0	200	450	15º C	6º C	
	PUW Loop Cooler	0	40	500	20º C	6º C	

- Match distribution power input with cooling load
- Valid for CTW, CHW, HTM, Pumped Nh3 .

4.

- Have multiple pumps or VSD's on pumps .
- Avoid tertiary loops and booster pumps on large circuits
- Apply booster pumps to dedicated loads rather than penalising the entire circuit e.g. Vacuum pumps, capillary lines.

Top 8 Areas for Improved Efficiency

8. Monitor COSP

Coefficient of System Performance – True Picture of Efficiency

- Information derived from Flow, Temps & Power meters
- Parasitic Loads high relative to cooling load during winter
- Part Load efficiency poor
- Costing 4 times as much to do cooling during winter than during the summer
- Possible to identify low efficiency equipment
- Set EPI and target energy savings

Information is Power

HYDROCARBON CHILLERS

Solution for ODP & GWP

Works for loads below viable size for Nh3

Minimal Charge for Safety

Same technology as per HFC's

Coldrooms, Freezers, Conventional Water Chilling Applications

Organic Rankine Cycle

Applications

- Heat recovery
- Biomass
- Solar thermodynamic

THANK YOU